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Fault Detection and Diagnosis in Propulsion Systems:
A Fault Parameter Estimation Approach
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The paper presents the development of a fault detection and diagnosis (FDD) system with applications to the
Space Shuttle main engine. The FDD utilizes a model-based method with real-time identification and hypothesis
testing for actuation, sensor, and performance degradation faults.

Introduction

T HERE is a growing demand to improve the control sys-
tems of liquid propulsion rocket engines for enhanced

performance with increased reliability, durability, and main-
tainability. This demand can be met by improving the individ-
ual reliabilities of system components and also by an intelligent
control system1 with fault detection, diagnostics, and accom-
modation capabilities. This paper focuses on the development
of a model-based fault detection and diagnosis (FDD) system
that can be used as an integral part of such an intelligent
control system.

During the last two decades of the development of fault
detection methods, the so-called model-based fault detection
approach has received considerable attention. These schemes
basically rely on the idea of analytical redundancy. As opposed
to physical redundancy, which uses measurements from redun-
dant sensors for fault detection purposes, analytical redun-
dancy is based on the signals generated by the mathematical
model of the system being considered. These signals are then
compared with the actual measurements obtained from the
system. The comparison is done by using the residual quanti-
ties that give the difference between the signals being measured
and the signals being generated by the mathematical model.
Hence, the model-based fault detection and diagnosis can be
defined as the determination of faults of a system from the
comparison of the measurements of the system with a priori
information represented by the model of the system through
generation of residual quantities and their analysis.

In the absence of noise and modeling errors, the residual
vector is equal to the zero vector under fault-free conditions.
Hence, a nonzero value of the residual vector indicates the
existence of the faults. When noise and modeling errors are
present, their effect has to be separated from the effect of
faults. In the simplest case, this is done by comparing the
residual magnitudes with threshold values. Using the distribu-
tion of the residuals under fault-free conditions, one can deter-
mine threshold values to minimize false alarms and missed
detections by selecting the level of confidence.
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The basis for the isolation of a fault is the fault signature,
i.e., a signal obtained from a diagnostic model defining the
effects associated with a fault. A diagnostic model is obtained
by defining the residual vector in such a manner that its direc-
tion is associated with known fault signatures. Furthermore,
each signature has to be unique to one fault to accomplish
fault isolation.

Since the generation of residual quantities is a central issue
in model-based FDD schemes, it will be briefly reviewed in this
section. Survey papers by Frank,2 Gertler,3 Willsky,4 and Iser-
mann5 discuss the rich variety of approaches that have been
proposed for the generation of residuals. These approaches
can be classified as observer- or filter-based approaches, a
parity relations approach, and parameter estimation ap-
proaches. The first two classes are closely related because it has
been shown by Massoumnia6 that a parity relations approach
is equivalent to using deadbeat observers.

The basic idea within the observer- or filter-based ap-
proaches is to estimate the outputs of the system from the
measurements or a subset of measurements by using either
Luenberger observer(s) in a deterministic setting or filter(s) in
a stochastic setting. Then the output estimation error or inno-
vations in the stochastic case are used as a residual. The flexi-
bility in selecting observer gains has been fully exploited in the
literature, yielding a rich variety of fault detection schemes.

The parity relations approach is based on checking the con-
sistency of the mathematical relations between the outputs (or
a subset of outputs) and inputs. These relations may lead to
direct redundancy, which gives the static algebraic relations
between the sensor outputs, or temporal redundancy, which
gives the dynamic relations between inputs and outputs.

All of the fault detection schemes either explicitly or implic-
itly are based on the assumption that faults cause changes in
parameters of the system. In the parameter estimation ap-
proach system parameters are estimated on-line to monitor
these changes for fault detection and diagnostics purposes.
Therefore, it is a simpler and more direct approach than the
others. In this approach fault decision logic can also employ
the estimates of some physical parameters5 such as efficiency,
fuel consumption, etc., which can effectively be used in fault
diagnosis logic.

It is believed that the success of an FDD scheme depends on
the accurate and appropriate modeling of the faulty process.
The model of the faulty process defines the effects associated
with faults. If the faulty process is modeled to distinguish the
faults, then the residuals carry meaningful information that
can be used for diagnostics purposes. Therefore, the main
attention of this work is devoted to the modeling of the faulty
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process. This is accomplished by incorporating the notion of
fault parameters7 in the model of the faulty process. These
fault parameters are estimated by using a real-time multivari-
able parameter estimation algorithm.8 It is assumed that no
more than one type of fault in the categories of either actua-
tion, sensor, or component faults can occur at the same time.
Hence, fault parameters are estimated based on different hy-
potheses of the type of faults. The fault parameters and their
patterns are then analyzed for diagnostic purposes.

Initially, the model of the faulty process is developed. This
is followed by the section describing the diagnostic model.
Then a fault diagnosis scheme based on the estimation of fault
parameters is discussed. Finally, the results obtained through
the application of this technique for the actuation and sensor
faults of the Space Shuttle main engine (SSME) are presented.
Preliminary results of the work discussed here were previously
reported in several conference papers.9'11

Model of the Faulty Process
Consider a discrete time linear system described by the fol-

lowing state equations:

x(n + 1) = Ax(n) + Bu(n) (1)

(2)

where jc, w, and y are the n x 1 state, the p x 1 input, and the
q x 1 output vectors, respectively. The A, B, and C are the
known nominal matrices of the system with appropriate di-
mensions. The process noise, measurement noise, and model-
ing errors due to uncertainties in the parameters are not in-
cluded for mathematical simplicity. It is assumed that the
system is in ex-canonical form8 such that the following relations
hold:

C = [0 : //-1]

A ^AQ + KHC
A"Q = 0

(HC)rA$KCj = 0 for k >0 and

(3)

(4)
(5)

(6)

(7)

where A' is a deadbeat gain, and AQ is a lower left triangular
structure matrix that consists of zeros and ones only. A0 is
determined by the observability indices {/*/); (HC)r. denotes
the /th row of HC, whereas Kc. denotes they'th column of K.

The model of the faulty process is developed by considering
the cause/effect relations for faults as associated with the
parameters of the system. Actuation, sensor, and component
faults of the system are considered. Sensor faults due to the
multiplicative error and bias are modeled as

(8)

where ys(n) and y(n) are the sensor measurement and the
actual output of the process, respectively; the matrix Fs is a
diagonal matrix, and/5o is a constant vector, both with appro-
priate dimensions.

The actuation faults are modeled in a similar way as

= Fau(n)+fa0 (9)

where ua(n) and u(n) are the actual actuator output and the
requested actuator input, respectively. The matrix Fa is a diag-
onal matrix, and/a0 is a constant vector, both with appropri-
ate dimensions.

In the case of the system component faults, it is assumed
that the structure of the system, i.e., the observability indices,
remains the same, whereas the system matrix A is affected.

The new system matrix under faulty conditions becomes Af
and can be described as

(10)

The parameters Fa, F5, /fl0, fsQ, and ^4/ are referred to as
fault parameters in this study. Under normal operating condi-
tions, the fault parameters Fa and Fs are equal to identity
matrices, whereas the vectors^o and^o are equal to the zero
vectors. Under faulty operating conditions, the fault parame-
ters change, reflecting the effect of fault. For example, a stuck
actuator valve will cause the corresponding element of Fa to
change from a value of unity to a value of zero. A valve ball
seal leakage will manifest itself as a change in the correspond-
ing element of fao from a value of zero to a nonzero value.

Using Eqs. (8-10) in Eqs. (1) and (2), the open-loop dynam-
ics of the faulty process can be modeled as

x(n + 1) - Afx(n) + BFau(n) + Bfa0 (11)

\ = Cx(n) (12)

(13)

The preceding equations can be used to obtain the state, the
output, and the measured output of the faulty process in terms
of the nominal system parameters, fault parameters, input,
and the measured output as

(14)

(15)

(16)

A'0~ ' [KfHF~ ' : BFa }

y(n)= CAl
0-l(Bfa0-KfHFi-1fs0')

/=!

-> : BFa]\M" ~ *
LM ("~O

y,(n) = f* + FsCA'0-l(Bf<l0-KfHF-lfM)

{f ' [KfHF- 1 : BFa ]

Diagnostic Model
As mentioned earlier, several techniques may be used to

generate the residual vector to be used as the diagnostic model.
In this work the fault parameters are used as the residual
vector that makes the diagnostic model. Fault parameters can
be used to isolate faulty components. They can also be used to
determine the size of faults that may be needed for accommo-
dation purposes. Hence, a real-time identification of fault
parameters using measurements of the input and output data
and with the knowledge of nominal system parameters is pro-
posed in this study for fault detection and diagnostic purposes.

To obtain fault parameters, Eqs. (6) and (8) may be used as
a single diagnostic model. A close look at these equations,
however, reveals that fault isolation may not be possible if
multiple faults occur. For this reason, three different models—
each monitoring different faults in actuation, sensor, and
component fault categories—are used as diagnostic models. It
is assumed that no more than one fault may occur at the same
time. With this assumption, Eq. (16) can be rewritten for
actuation faults as

(17)
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Fig. 1 Model based fault detection and diagnosis scheme.

the input-output data under a specified hypothesis and to gen-
erate the signature data for fault diagnostics purposes. The
second step is the fault diagnosis module that checks all of the
information obtained from the HTM level, isolates the fault,
and determines its magnitude.

There are three hypothesis testing modules on the first data
processing layer in the proposed diagnostic system as shown in
Fig. 1. These modules are used for on-line identification of
fault parameters corresponding to each hypothesis of actua-
tion, sensor, or component faults. For example, under the
hypothesis of an actuation fault the corresponding module
uses the known nominal system matrices A, B, and C and the
residuals generated from the input-output data to estimate the
fault parameters Fa and/a0.

On the estimation of the fault parameters, it is also neces-
sary to determine the validity of the hypothesis. This is accom-
plished by comparing the output estimate obtained using the
fault parameters with the actual measured output. For this
purpose the output estimate error and the standard error of
estimate (SEE) are defined as

I 0.5

I

0.0

- fal
----- fa2
........ fa01

---- fa02

0.0 2.0 3.0
Time (sec)

Fig. 2 OPOV leakage at time t = 0.0 s.

and for sensor faults as

ys(n) = fso ~

and for component faults as

(18)

(19)

Residuals r ( n ) for each category of faults are generated by
using the difference between the sensor output ys(n) and the
estimated output of the normal process y(n) as

r ( n ) = ys(n) - y(n) (20)

The estimated output of the normal process is obtained by
using a deadbeat observer as

(21)

where the observer gain K is defined by Eqs. (4-7).
Hence, the proposed diagnostic scheme uses a two-step ap-

proach. The first step is composed of a group of hypothesis
testing modules (HTM) processed in parallel to test each class
of suspected faults. Each module is solely designed to process

SEE =

(22)

(23)

where subscripts / andy refer to the /th output andy'th class of
faults, and Hj is the hypothesis that the fault belongs to they th
class of faults. The SEE is calculated at each step with the most
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Fig. 3 FPOV leakage at time t = 0.0 s.
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Fig. 4 OPOV stuck valve at time t = 0.0 s.
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recent estimate of the fault parameters and is used to accept or
reject the hypothesis.

The fault diagnosis module examines all of the estimated
fault parameter values and SEEs and generates a conclusion of
the faulty status of the system. This is done by 1) comparing
the fault parameters against the predetermined signatures,
2) comparing the SEEs against the preselected thresholds, and
3) comparing the relative magnitude of the SEEs among all of
the hypothesis testing modules. For the case of actuation
faults, if the estimated fault parameter Fa is not equal to the
identity matrix /, then it is concluded that the input gain matrix
has changed, which corresponds to a stuck actuator valve.
Also, a nonzero component of/fl0 shows a bias between the
command input and the actual input to the system.

Fault Detection and Diagnosis of the SSME:
Actuation and Sensor Faults

The FDD system based on fault parameter estimation devel-
oped in this study is applied to the diagnosis of actuation and
sensor faults of the Space Shuttle main engine. The modeling
of the SSME dynamics is accomplished in a previous study by
Duyar et al.8 This work is further extended to cover a wide
range of operations by using a piecewise linear model12 with
two inputs and four outputs. Nominal matrices are obtained
from the piecewise linear model developed in this previous
study. The inputs considered were the oxidizer preburner oxi-
dizer valve (OPOV) and the fuel preburner oxidizer valve
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Fig. 5a Multiplicative fault in PCIE sensor.
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Fig. 6a Bias in the mixture ratio sensor.
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Fig. 5b Multiplicative fault in PCIE sensor.

Fig. 6b Bias in the mixture ratio sensor.

(FPOV). The outputs are the mixture ratio (MR), the chamber
inlet pressure (PCIE), and the speeds of the oxidizer and fuel
preburners (NOP and NFV, respectively). In the aforemen-
tioned studies, the accuracy of the simplified model is verified
by comparing its outputs with the outputs obtained from a
nonlinear performance simulation of the SSME, referred to as
the digital transient model (DTM), developed by Rockwell
International Corporation's Rocketdyne Division.13

SSME dynamic responses to actuation and sensor faults are
simulated using the DTM with the closed-loop control system
active. The types of faults in each category are induced in a
manner to simulate the actual faults observed on the SSME as
reported by Glover et al.14 The operating condition selected for
this study is 100% rated power level with a nominal mixture
ratio of 6.026. A sampling time of 0.04 s is used.

Figures 2-4 show the identified fault parameters for simu-
lated actuation faults. In Figs. 2 and 3 fault parameters corre-
sponding to valve ball seal leakage are shown. The magnitude
of the bias fa0 is directly related to the leakage flow rate.
Figure 4 shows fault parameters corresponding to a stuck
valve. In this case, the valve stops responding to the input
command. The magnitude of the bias/o01 depends on the valve
stuck position and the desired position of the operating condi-
tion. Figures 5 and 6 show results obtained for simulated mul-
tiplicative and additive sensor faults. As illustrated in these
results, both the fault isolation and the fault magnitude esti-
mation can be accomplished with this approach.
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Conclusions
A fault detection and diagnosis system based on fault pa-

rameter estimation is developed for actuation, sensor, and
component faults. The validity of the FDD system is demon-
strated by applying it to the SSME for actuation and sensor
faults. In the case of SSME actuation and sensor faults, it is
shown that the parameter estimation approach can be used
effectively for fault diagnosis purposes. It is a direct approach
and therefore reduces the detection, isolation, and magnitude
estimation tasks to the task of comparing fault parameter
values before and after the occurrence of a fault. Fault
parameters can also be used for accommodation purposes be-
cause they are used to estimate the fault magnitudes. The FDD
system developed has the added advantage that, in the case of
actuation and sensor faults, a priori knowledge about fault
signatures is not needed. Therefore, this approach can im-
prove the SSME safety over the current redline schemes.

Further research is needed to apply this scheme to the com-
ponent faults and to determine the type and quality of mea-
surements for the real-time implementation. The real-time im-
plementation of this study for the actuation faults of the
SSME is currently being studied as an integral part of the
intelligent control system demonstration project at NASA
Lewis Research Center.
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